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ABSTRACT 

Brain morphometry provides a powerful way to better research 

and understand various neurological diseases. It revolves around 

extracting valuable morphological characteristics from a structural 

magnetic resonance imaging (MRI) scan of a human brain (such 

as cortical thickness, mean curvature of the brain, and related 

measures). Many of the popular approaches to calculating gray 

matter volumes from brain scans avoid manual measurements and 

utilize automated software for a more efficient and reliable 

extraction. The prevalent approach is to first segment the MRI 

volume into semantic regions followed by computing required 

metrics. Semantic segmentation needs to be performed precisely 

for each region, although most of the obtained fine structure is 

subsequently discarded.  Another problem with this approach lies 

largely in the fact that it can take several hours to complete the 

calculations required to estimate the cortical gray matter volume 

for one brain scan. Clinical and research settings that use MRI 

data require fast and accurate calculations of these morphological 

characteristics, thus limiting brain morphometry’s practical 

application. The ability of deep learning models to generate 

accurate predictions within seconds on complicated data like MRI 

scans remedies the issue of time that many current approaches 

face and bypasses statistical issues of the two-stage methods. We 

developed a fast, high performing supervised machine learning 

model that predicts cortical gray matter volumes. Our model was 

trained using 670 brain scans each with 68 cortical gray matter 

labels generated by a popular brain morphometry software called 

FreeSurfer. We show high quality predictions of cortical gray 

matter volumes that are generated within mere seconds, rendering 

deep learning a much more viable alternative to current methods 

of brain morphometry. 
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1 Introduction 

MRI scans have been a boon to both research and clinical work, 

providing an accurate, reliable and non-invasive technique to 

understand and view the brains of patients and subjects in-vivo [1-

3]. The advances in MRI’s usefulness largely come due to a 

popular method of analyzing MRI scans: brain morphometry [4]. 
  

Brain morphometry focuses on measuring various characteristics 

of an MRI, such as gray matter density, cortical thickness, 

segmentation, and other morphological characteristics [4]. This 

method of analyzing MRI largely uses the T1-Weighted MRI 

scan, since these typically have higher contrast, enabling easier 

calculation and detection of many characteristics of the brain [2]. 

Current approaches to brain morphometry like Voxel-Based-

Morphometry (VBM) [5] and Surface-Based-Morphometry 

(SBM) [6] have high accuracy when calculating these various 

measurements but suffer largely due to the slow calculation time. 

One of the most popular software for brain morphometry, 

FreeSurfer [7], requires 8-9 hours of calculation to get 

measurements for one MRI scan. The relatively high time 

commitment leads to problems in clinical settings where many 

patients need quick results, but also can slow down research on 

large datasets (for example, processing 250 MRI scans would take 

over 83 days on a single machine). 
 
To address the issue of low speed while maintaining accuracy, 

some researchers have turned to machine learning and deep 

learning techniques due to their ability to quickly output hundreds 
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of predictions within minutes. The software FastSurfer [8]- 

FreeSurfer’s faster version- utilizes deep learning to boost its 

prediction time. FastSurfer achieves a significant speed up, 

requiring only around 1 hour for each brain scan. While this 

approach boasts a high accuracy and speed, the time for 

evaluation is still rather limiting.  

 
Another approach used random forest regression and was able to 

reduce prediction time for each brain scan to around 15 minutes, 

but still required the use of some preprocessing measures from 

FreeSurfer [9]. This approach focused on predicting the thickness 

and mean curvature of the cerebral cortex since both are valuable 

measures in detecting and monitoring neurodegenerative diseases 

[9]. 
  

Recently, Rebsamen et al. [10] proposed a deep-learning based 

approach that utilized 3D Convolutional Neural Networks (CNNs) 

to predict volumes of subcortical regions, mean thickness and 

mean curvature of cortical parcellations directly from the T1-

weighted MRI with less FreeSurfer preprocessing than the 

previous approach. The approach was able to generate suitable 

performance for many individual regions but performed poorly 

overall. Another paper published by Cruz et al. [11] attempted to 

improve the results of the former paper. This paper focused on 

using a 3D ResNet-based neural network called HerstonNet and 

scores an overall improved performance on volume, cortical 

thickness and mean curvature prediction. 
  

These approaches all have been able to contribute to the much 

faster calculations of morphological measures but lack accuracy 

and focus largely on cortical thickness and mean curvature. While 

cortical thickness and mean curvature provide valuable insight 

into many different conditions, cortical gray matter volume is 

arguably just as useful as a marker for various other conditions 

and for research purposes [12-15]. We propose a deep learning-

based approach using 3D CNNs to predict gray matter volumes 

for various cortical regions of interest (ROI). Using the results 

from [11], we utilize a MeshNet architecture (inspired largely 

from previous work by those in our lab demonstrating this 

architecture’s efficiency for MRI segmentation [16,17]) to form 

our predictions. We also use the model architecture from 

Rebsamen et al. [10] to act as a baseline that we can use to better 

understand and compare the MeshNet model’s performance since 

there is little to no research focused on using deep learning to 

predict cortical gray matter volumes. Our task is a multi-class 

linear regression task, with the inputs being MRI scans and the 

outputs being gray matter volumes for regions of interest. 

2 Methodology 

2.1 Data and Preprocessing 

The Human Connectome Project (HCP) [18] was the data source 

used for this project. The HCP is a large dataset that contains MRI 

scans and labels generated using FreeSurfer [7]. Out of this 

dataset, 670 healthy subject’s brains were used, with 80% in the 

training data and 20% in the test data. Exclusively T1-Weighted 

images were used, and three main preprocessing steps were 

applied: normalizing the images to 1x1x1 mm thickness using 

FreeSurfer; zero-padding to create images with consistent 

dimensions of 256x256x256; and Min-Max normalization on the 

volumes. 

2.2 Models 

Two main model architectures were used: the model from 

Rebsamen et al. [10] that predicted cortical thickness and mean 

curvature and a MeshNet-based model [16,17]. The model 

architecture from Rebsamen et al. [10] is used as a baseline since 

the paper attempted to predict different morphological 

characteristics for the same regions of interest as our paper. The 

MeshNet model (pictured in Fig. 2) is the primary focus of this 

paper, with the model from Rebsamen et al. acting as a baseline 

model (pictured in Fig. 1) to better understand how well the 

MeshNet model performs. Since there are little to no existing 

papers on cortical gray matter prediction, utilizing two models 

gave us greater insight into overall evaluation and understanding 

of relative performance. Nearly the entirety of model creation, 

training, and testing utilized PyTorch [19] and its extension, 

Catalyst [20]. For all testing, two Tesla V100 PCle 16 GB GPUs 

were used. 

 

Figure 1: Baseline model architecture [10] 

 

Figure 2: MeshNet based model architecture [16, 17] 
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2.3 Evaluation 

There were three main evaluation metrics through which the 

models were evaluated: mean squared error (MSE), normalized 

loss, and saliency. MSE was used largely to monitor model 

performance during training and to pinpoint regions in the output 

that were difficult for our models to predict. While MSE was used 

for training, it was not the most important metric due to how it is 

calculated.  

Gray matter prediction is done across brain regions with a wide 

range of volumes, with some being several thousands of voxels 

(1x1x1 mm cubes) and others being only a few hundred. Using 

MSE over-exaggerates the differences between large regions over 

small regions when attempting to gauge performance. To remedy 

this and make evaluation more consistent, a normalized loss was 

utilized (1). The normalized loss simply took the MSE for the 

actual and predicted values, but also divided the MSE by taking 

the MSE of the actual value and zero. This method removed the 

confusion caused by differences in scale between different 

regions. This metric was not useful in analyzing individual model 

performance, but rather, for comparing our baseline and MeshNet 

models and understanding which regions were truly difficult for 

the model to predict. 

 

∑ (𝑦−𝑦̂)2𝑛
𝑖=0

2𝑛
∑ (𝑦−0)2𝑛
𝑖=0

2𝑛

  (1) 

Saliency was the final piece in understanding model performance. 

Saliency allows one to understand which parts of the input 

influence the output of the model the most. Generation of saliency 

and saliency visualizations was done using the Captum library 

[21]. By peering into what part of the input is the most important 

for predictions, it is much easier to understand if the model’s 

predictions will be able to generalize well to unseen data. For 

example, if the model is largely focusing on the skull to generate 

its predictions, this likely will translate poorly to a clinical setting 

even if the predictions the model makes are fairly accurate. 

Likewise, if a model focuses entirely on the wrong part of the 

brain to predict a given region, clinical and research application 

becomes difficult to justify. Saliency can also provide insight into 

what may be causing a model’s performance to suffer by showing 

exactly how the model is generating a lackluster result.  

To generate saliency images that were easy to interpret, some 

processing was applied on the visualizations. To calculate 

saliency, the Captum library creates an N-dimensional tensor that 

is the same size as the input. This tensor has a value for each pixel 

in the input that lets the user know which pixels were most 

important in predicting the output (a more positive value indicates 

higher importance, while more negative values indicate the 

opposite). While the saliency tensors for each output region were 

different, they initially looked very similar when visually plotted. 

To make more apparent visual differences, the mean saliency 

tensor (the sum of each region’s tensor divided by the number of 

regions), was subtracted from each individual region’s saliency 

tensor. This subtraction made it easier to see the saliency for one 

region, since the overall model’s saliency for all the regions was 

removed. The saliency images presented in the paper were created 

by taking the saliency tensor generated by Captum, finding the 

coordinate with the highest value, and then slicing the 3D images 

at that coordinate to generate 2D representations of the saliency. 

3 Results 

This section will go over the performance of both models by 

analyzing the average absolute difference of predictions and 

targets for each region as well as looking at saliency visualizations 

for both models. Overall performance and saliency will be 

analyzed for both models. 

The graphs in Figs. 3 and 4 were generated by taking each brain 

scan in the test data, taking the absolute difference between the 

predicted and actual value for each brain region, and then plotting 

box plots to show the distribution of this absolute difference for 

each region. These graphs show how incorrect the model was in 

voxels for each brain region and gives insight into how each 

region performed on average.  

3.1 Performance Analysis 

3.1.1 Baseline Model. On average, the baseline model took 6.2 

seconds per scan to make its predictions over the 135 scans in the 

testing data: a substantial improvement over the several hours 

taken by software like FreeSurfer. The final, normalized loss 

obtained for this model was 0.03. To better understand this loss, 

we can look at the absolute differences between targets and 

predicted values as well as saliency analysis.  

 

Using the baseline model’s absolute difference plot (Fig. 3), we 

can see that the baseline model had some regions for which it 

performed quite well, but many regions were on average 

hundreds, if not thousands, of voxels off the true value. Some 

regions (like the superior frontal) were often off by tens of 

thousands of voxels. These results alone indicate that this model 

may not be suitable for a clinical or research setting. 
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Figure 3: Absolute difference distribution for each region; x-

axis is in voxels (baseline model) 

3.1.2 MeshNet Model On average, this model took slightly 

longer than the baseline model to make predictions: 8.5 seconds 

on average over the 135 images used in training. The difference in 

prediction time is relatively small and is still a great improvement 

over the hours taken per scan by FreeSurfer. The model’s overall 

normalized loss was 0.015; approximately half of the loss from 

our baseline model. The model seems to have much better 

performance purely from this number, but again, analyzing the 

distributions of absolute difference between labels and predicted 

values for each region provides much better insight overall. 

 

In Fig. 4, we can see that the MeshNet model drastically 

outperforms the baseline model in every region. The MeshNet 

model is much closer to the actual target values on average, with 

most regions being within a thousand voxels of their target value 

on average. While the accuracy of this model seems to have 

improved when compared to the baseline model, saliency is still 

required to fully justify both models’ usage in a clinical or 

research setting. 

 

Figure 4: Absolute difference distribution for each region; x-

axis is in voxels (MeshNet model) 

3.2 Saliency Analysis 

In this section, we will examine the saliency visualizations for the 

MeshNet and baseline model. We will compare the saliency 

visualizations of the best, average, and worst performing regions 

(in terms of normalized loss) for both models. Examining these 

visualizations will reveal why the MeshNet model is able to have 

better performance and where the baseline model fails.  

3.2.1 Saliency for best regions. Fig. 5 plots saliency 

visualizations for the best performing region for the baseline 

model. In these images, the brighter the color of the saliency, the 

more important that part of the image was to predict the final 

output. This saliency visualization shows that the baseline model 

focuses on a part of the brain that is somewhat in the area of the 

region it is trying to predict, but the model also focuses heavily on 

the skull to make its predictions. Since the model seems to be 

focusing on irrelevant parts of the MRI to predict its best 

performing region, it helps to explain the lackluster performance 

from this model. 

Immediately in the best performing region’s saliency image (here, 

the darker the saliency, the more relevant that part of the image is 

to making predictions), we can see that the MeshNet model not 

only focuses on the most relevant parts of the brain for the region 

it is predicting, but also does not unnecessarily focus on the skull 

(Fig. 6). The left frontal pole is right at the tip of the brain, and 

that is exactly where the model is looking to make its predictions 
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on this region. The saliency visualizations clearly demonstrate 

why the MeshNet model outperforms the baseline model. 

 

Figure 5: A Saliency visualization for Right Entorhinal 

Region. Both the pure saliency image (left) and the saliency 

image laid over a visualization of the brain scan (right) are 

shown (normalized loss: 0.001) 

 

Figure 6: Saliency visualizations for Left Frontal Pole region. 

Both the pure saliency image (left) and the saliency image laid 

over a visualization of the brain scan (right) are shown 

(normalized loss: 0.000166) 

3.2.2 Saliency for average regions. In Fig. 7, we have an 

average performing region for the baseline model. Here, we can 

see that the model is almost completely focusing on the skull to 

make its prediction and lightly focuses on some random areas of 

the brain unrelated to the region being predicted. Once more, the 

model focuses too much on the skull and irrelevant parts of the 

brain to make its predictions, explaining its poor performance and 

deeming it unreliable for a clinical or research setting.  

Even in the average performing region’s saliency for the MeshNet 

model (Fig. 8), the model still focuses most of its attention on the 

brain and on the most relevant parts of the brain to the region it is 

predicting. In contrast to the baseline model, the MeshNet model 

is still recognizing relevant regions of the brain to make 

predictions even in average performing regions.  

Figure 7: Saliency visualizations for Left Lingual Region. 

Both the pure saliency image (left) and the saliency image laid 

over a visualization of the brain scan (right) are shown 

(normalized loss:  0.1359) 

 

Figure 8: Saliency visualizations for Right Pars Triangularis 

region. Both the pure saliency image (left) and the saliency 

image laid over a visualization of the brain scan (right) are 

shown (normalized loss:  0.0076) 

3.2.3 Saliency for worst regions. For the worst performing 

region for the baseline model in Fig. 9, we see that the model 

completely focuses on a small region in the skull. This model 

clearly lacks the sophistication to be used in a clinical or research 

setting both due to its lack of accuracy in predictions shown from 

the absolute difference plot, but also due to its poor method of 

forming predictions shown by the saliency. 

 

Figure 9: Saliency visualizations for Right Superior Frontal 

Region. Both the pure saliency image (left) and the saliency 

image laid over a visualization of the brain scan (right) are 

shown (normalized loss: 2.1049) 

In the worst performing region (Fig. 10), the MeshNet model 

focuses on the skull to form its predictions, completely ignoring 

the brain and relevant regions. Even though the performance of 

the MeshNet model is superior to the baseline model, it still 

requires further training to be reliable for all regions. Regions 

such as the left superior frontal region indicate the MeshNet 

model still requires further training and tweaking before it can 

consistently predict all the regions of interest this paper focuses 

on.  
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Figure 10: Saliency visualizations for Left Superior Frontal 

region. Both the pure saliency image (left) and the saliency 

image laid over a visualization of the brain scan (right) are 

shown (normalized loss: 0.069) 

4 Discussion and Future Work 

Our MeshNet-based architecture boasts impressive performance 

on many regions of the brain and demonstrates the potential for 

deep learning to be applied to brain morphometry. The MeshNet 

architecture also proves its utility in a brain morphometry 

application once more, as done so in Cruz et al. [11], and provides 

a starting point for researchers exploring other applications of 

brain morphometry such as segmentation.  
 
The main limitations now are both the need for better, more 

consistent performance across regions as well as the need for 

saliency images showing the model utilizes relevant parts of the 

MRI scan to make its predictions. While we can estimate the 

volumes of some regions well, many regions still could have 

much better predictions. The focus moving forward will be to 

improve model predictions on underperforming regions.  
 
To improve model predictions and saliency, there are several 

avenues of future work to explore. The main way to further the 

results of current work is focusing on further tweaking and 

expanding the MeshNet model. The model seems to have reached 

convergence, but could benefit from hyper-parameter 

optimization, data augmentation, and other measures which may 

improve performance. We are currently also exploring multi-task 

learning, which operates on the theory that when one model 

performs two similar but separate tasks, performance on both 

objectives increases. Our initial work in this area focuses on 

developing a multi-task model that predicts both gray matter 

volumes of cortical regions as well as gray matter and white 

matter segmentation. 

5 Conclusion 

Our work is among the first to demonstrate that deep learning 

models provide fast and reliable estimations of cortical gray 

matter volumes using T1-weighted MRI scans. The results from 

this paper provide hope for efficient methods of morphometry in 

both clinical and research settings. With further work, AI-based 

morphometry will only continue to become a more viable option. 
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